Kamis, 26 November 2015

Corrosion in nonmetal

Corrosion in nonmetals

Most ceramic materials are almost entirely immune to corrosion. The strong chemical bonds that hold them together leave very little free chemical energy in the structure; they can be thought of as already corroded. When corrosion does occur, it is almost always a simple dissolution of the material or chemical reaction, rather than an electrochemical process. A common example of corrosion protection in ceramics is the lime added to soda-lime glass to reduce its solubility in water; though it is not nearly as soluble as pure sodium silicate, normal glass does form sub-microscopic flaws when exposed to moisture. Due to its brittleness, such flaws cause a dramatic reduction in the strength of a glass object during its first few hours at room temperature.

Corrosion of polymers

Ozone cracking in natural rubber tubing
Polymer degradation involves several complex and often poorly understood physiochemical processes. These are strikingly different from the other processes discussed here, and so the term "corrosion" is only applied to them in a loose sense of the word. Because of their large molecular weight, very little entropy can be gained by mixing a given mass of polymer with another substance, making them generally quite difficult to dissolve. While dissolution is a problem in some polymer applications, it is relatively simple to design against. A more common and related problem is swelling, where small molecules infiltrate the structure, reducing strength and stiffness and causing a volume change. Conversely, many polymers (notably flexible vinyl) are intentionally swelled with plasticizers, which can be leached out of the structure, causing brittleness or other undesirable changes. The most common form of degradation, however, is a decrease in polymer chain length. Mechanisms which break polymer chains are familiar to biologists because of their effect on DNA: ionizing radiation (most commonly ultraviolet light), free radicals, and oxidizers such as oxygen, ozone, and chlorine. Ozone cracking is a well-known problem affecting natural rubber for example. Additives can slow these process very effectively, and can be as simple as a UV-absorbing pigment (i.e., titanium dioxide or carbon black). Plastic shopping bags often do not include these additives so that they break down more easily as litter.

Corrosion of glasses
Glass is characterized by a high degree of corrosion-resistance. Because of its high water-resistance it is often used as primary packaging material in the pharma industry since most medicines are preserved in a watery solution. Besides its water-resistance, glass is also very robust when being exposed to chemically aggressive liquids or gases. While other materials like metal or plastics quickly reach their limits, special glass-types can easily hold up.

Glass corrosion
Glass disease is the corrosion of silicate glasses in aqueous solutions. It is governed by two mechanisms: diffusion-controlled leaching (ion exchange) and hydrolytic dissolution of the glass network.[10] Both mechanisms strongly depend on the pH of contacting solution: the rate of ion exchange decreases with pH as 10−0.5pH whereas the rate of hydrolytic dissolution increases with pH as 100.5pH.[11]

Mathematically, corrosion rates of glasses are characterized by normalized corrosion rates of elements NRi (g/cm2·d) which are determined as the ratio of total amount of released species into the water Mi (g) to the water-contacting surface area S (cm2), time of contact t (days) and weight fraction content of the element in the glass fi:

.
The overall corrosion rate is a sum of contributions from both mechanisms (leaching + dissolution) NRi=Nrxi+NRh. Diffusion-controlled leaching (ion exchange) is characteristic of the initial phase of corrosion and involves replacement of alkali ions in the glass by a hydronium (H3O+) ion from the solution. It causes an ion-selective depletion of near surface layers of glasses and gives an inverse square root dependence of corrosion rate with exposure time. The diffusion-controlled normalized leaching rate of cations from glasses (g/cm2·d) is given by:

,
where t is time, Di is the i-th cation effective diffusion coefficient (cm2/d), which depends on pH of contacting water as Di = Di0·10–pH, and ρ is the density of the glass (g/cm3).

Glass network dissolution is characteristic of the later phases of corrosion and causes a congruent release of ions into the water solution at a time-independent rate in dilute solutions (g/cm2·d):

,
where rh is the stationary hydrolysis (dissolution) rate of the glass (cm/d). In closed systems the consumption of protons from the aqueous phase increases the pH and causes a fast transition to hydrolysis.[12] However, a further saturation of solution with silica impedes hydrolysis and causes the glass to return to an ion-exchange, e.g. diffusion-controlled regime of corrosion.

In typical natural conditions normalized corrosion rates of silicate glasses are very low and are of the order of 10−7–10−5 g/(cm2·d). The very high durability of silicate glasses in water makes them suitable for hazardous and nuclear waste immobilisation.

Glass corrosion tests

Effect of addition of a certain glass component on the chemical durability against water corrosion of a specific base glass (corrosion test ISO 719).[13]
There exist numerous standardized procedures for measuring the corrosion (also called chemical durability) of glasses in neutral, basic, and acidic environments, under simulated environmental conditions, in simulated body fluid, at high temperature and pressure,[14] and under other conditions.

The standard procedure ISO 719[15] describes a test of the extraction of water-soluble basic compounds under neutral conditions: 2 g of glass, particle size 300–500 μm, is kept for 60 min in 50 ml de-ionized water of grade 2 at 98 °C; 25 ml of the obtained solution is titrated against 0.01 mol/l HCl solution. The volume of HCl required for neutralization is classified according to the table below.

Amount of 0.01M HCl needed to neutralize extracted basic oxides, mlExtracted Na2O
equivalent,

Tidak ada komentar:

Posting Komentar