Methods
NDT methods may rely upon use of electromagnetic radiation, sound, and inherent properties of materials to examine samples. This includes some kinds of microscopy to examine external surfaces in detail, although sample preparation techniques for metallography, optical microscopy and electron microscopy are generally destructive as the surfaces must be made smooth through polishing or the sample must be electron transparent in thickness. The inside of a sample can be examined with penetrating radiation, such as X-rays, neutrons or terahertz radiation. Sound waves are utilized in the case of ultrasonic testing. Contrast between a defect and the bulk of the sample may be enhanced for visual examination by the unaided eye by using liquids to penetrate fatigue cracks. One method (liquid penetrant testing) involves using dyes, fluorescent or non-fluorescent, in fluids for non-magnetic materials, usually metals. Another commonly used NDT method used on ferrous materials involves the application of fine iron particles (either liquid or dry dust) that are applied to a part while it is in an externally magnetized state (magnetic-particle testing). The particles will be attracted to leakage fields within the test object, and form on the objects surface. Magnetic particle testing can reveal surface & some sub-surface defects within the part. Thermoelectric effect (or use of the Seebeck effect) uses thermal properties of an alloy to quickly and easily characterize many alloys. The chemical test, or chemical spot test method, utilizes application of sensitive chemicals that can indicate the presence of individual alloying elements. Electrochemical methods, such as electrochemical fatigue crack sensors, utilize the tendency of metal structural material to oxidize readily in order to detect progressive damage.
Analyzing and documenting a non-destructive failure mode can also be accomplished using a high-speed camera recording continuously (movie-loop) until the failure is detected. Detecting the failure can be accomplished using a sound detector or stress gauge which produces a signal to trigger the high-speed camera. These high-speed cameras have advanced recording modes to capture some non-destructive failures.[5] After the failure the high-speed camera will stop recording. The capture images can be played back in slow motion showing precisely what happen before, during and after the non-destructive event, image by image.
Applications
NDT is used in a variety of settings that covers a wide range of industrial activity, with new NDT methods and applications, being continuously developed. Non-destructive testing methods are routinely applied in industries where a failure of a component would cause significant hazard or economic loss, such as in transportation, pressure vessels, building structures, piping, and hoisting equipment.
Weld verification
1. Section of material with a surface-breaking crack that is not visible to the naked eye.
2. Penetrant is applied to the surface.
3. Excess penetrant is removed.
4. Developer is applied, rendering the crack visible.
In manufacturing, welds are commonly used to join two or more metal parts. Because these connections may encounter loads and fatigue during product lifetime, there is a chance that they may fail if not created to proper specification. For example, the base metal must reach a certain temperature during the welding process, must cool at a specific rate, and must be welded with compatible materials or the joint may not be strong enough to hold the parts together, or cracks may form in the weld causing it to fail. The typical welding defects (lack of fusion of the weld to the base metal, cracks or porosity inside the weld, and variations in weld density) could cause a structure to break or a pipeline to rupture.
Welds may be tested using NDT techniques such as industrial radiography or industrial CT scanning using X-rays or gamma rays, ultrasonic testing, liquid penetrant testing, magnetic particle inspection or via eddy current. In a proper weld, these tests would indicate a lack of cracks in the radiograph, show clear passage of sound through the weld and back, or indicate a clear surface without penetrant captured in cracks.
Welding techniques may also be actively monitored with acoustic emission techniques before production to design the best set of parameters to use to properly join two materials.[6] In the case of high stress or safety critical welds, weld monitoring will be employed to confirm the specified welding parameters (arc current, arc voltage, travel speed, heat input etc.) are being adhered to those stated in the welding procedure. This verifies the weld as correct to procedure prior to nondestructive evaluation and metallurgy tests.
Structural mechanics
Structure can be complex systems that undergo different loads during their lifetime, e.g. Lithium-ion batteries.[7] Some complex structures, such as the turbo machinery in a liquid-fuel rocket, can also cost millions of dollars. Engineers will commonly model these structures as coupled second-order systems, approximating dynamic structure components with springs, masses, and dampers. The resulting sets of differential equations are then used to derive a transfer function that models the behavior of the system.
In NDT, the structure undergoes a dynamic input, such as the tap of a hammer or a controlled impulse. Key properties, such as displacement or acceleration at different points of the structure, are measured as the corresponding output. This output is recorded and compared to the corresponding output given by the transfer function and the known input. Differences may indicate an inappropriate model (which may alert engineers to unpredicted instabilities or performance outside of tolerances), failed components, or an inadequate control system.
Radiography in medicine
Chest radiography indicating a peripheral bronchial carcinoma.
As a system, the human body is difficult to model as a complete transfer function. Elements of the body, however, such as bones or molecules, have a known response to certain radiographic inputs, such as x-rays or magnetic resonance. Coupled with the controlled introduction of a known element, such as digested barium, radiography can be used to image parts or functions of the body by measuring and interpreting the response to the radiographic input. In this manner, many bone fractures and diseases may be detected and localized in preparation for treatment. X-rays may also be used to examine the interior of mechanical systems in manufacturing using NDT techniques, as well.
Notable events in early industrial NDT
1854 Hartford, Connecticut: a boiler at the Fales and Gray Car works explodes, killing 21 people and seriously injuring 50. Within a decade, the State of Connecticut passes a law requiring annual inspection (in this case visual) of boilers.
1880 - 1920 The "Oil and Whiting" method of crack detection[8] is used in the railroad industry to find cracks in heavy steel parts. (A part is soaked in thinned oil, then painted with a white coating that dries to a powder. Oil seeping out from cracks turns the white powder brown, allowing the cracks to be detected.) This was the precursor to modern liquid penetrant tests.
1895 Wilhelm Conrad Röntgen discovers what are now known as X-rays. In his first paper he discusses the possibility of flaw detection.
1920 Dr. H. H. Lester begins development of industrial radiography for metals.
1924 — Lester uses radiography to examine castings to be installed in a Boston Edison Company steam pressure power plant.
1926 The first electromagnetic eddy current instrument is available to measure material thicknesses.
1927 - 1928 Magnetic induction system to detect flaws in railroad track developed by Dr. Elmer Sperry and H.C. Drake.
1929 Magnetic particle methods and equipment pioneered (A.V. DeForest and F.B. Doane.)
1930s Robert F. Mehl demonstrates radiographic imaging using gamma radiation from Radium, which can examine thicker components than the low-energy X-ray machines available at the time.
1935 - 1940 Liquid penetrant tests developed (Betz, Doane, and DeForest)
1935 - 1940s Eddy current instruments developed (H.C. Knerr, C. Farrow, Theo Zuschlag, and Fr. F. Foerster).
1940 - 1944 Ultrasonic test method developed in USA by Dr. Floyd Firestone, who applies for a U.S. invention patent for same on May 27, 1940 and is issued the U.S. patent as grant no. 2,280,226 on April 21, 1942. Extracts from the first two paragraphs of this seminal patent for a nondestructive testing method succinctly describe the basics of ultrasonic testing. "My invention pertains to a device for detecting the presence of inhomogeneities of density or elasticity in materials. For instance if a casting has a hole or a crack within it, my device allows the presence of the flaw to be detected and its position located, even though the flaw lies entirely within the casting and no portion of it extends out to the surface. ... The general principle of my device consists of sending high frequency vibrations into the part to be inspected, and the determination of the time intervals of arrival of the direct and reflected vibrations at one or more stations on the surface of the part."
1946 First neutron radiographs produced by Peters.
1950 The Schmidt Hammer (also known as "Swiss Hammer") is invented. The instrument uses the world’s first patented non-destructive testing method for concrete.
1950 J. Kaiser introduces acoustic emission as an NDT method.
(Basic Source for above: Hellier, 2001) Note the number of advancements made during the WWII era, a time when industrial quality control was growing in importance.
1963 Frederick G. Weighart's[9] and James F. McNulty’s[10] co-invention of Digital radiography is an offshoot of the pairs development of nondestructive test equipment at Automation Industries, Inc., then, in El Segundo, California. See James F. McNulty also at article Ultrasonic testing
1996 Rolf Diederichs founded the first Open Access NDT Journal in the Internet. Today the Open Access NDT Database NDT.net
Tidak ada komentar:
Posting Komentar