Corrosion in passivated materials
Passivation is extremely useful in mitigating corrosion damage, however even a high-quality alloy will corrode if its ability to form a passivating film is hindered. Proper selection of the right grade of material for the specific environment is important for the long-lasting performance of this group of materials. If breakdown occurs in the passive film due to chemical or mechanical factors, the resulting major modes of corrosion may include pitting corrosion, crevice corrosion and stress corrosion cracking.
Pitting corrosion
Main article: Pitting corrosion
The scheme of pitting corrosion
Certain conditions, such as low concentrations of oxygen or high concentrations of species such as chloride which complete as anions, can interfere with a given alloy's ability to re-form a passivating film. In the worst case, almost all of the surface will remain protected, but tiny local fluctuations will degrade the oxide film in a few critical points. Corrosion at these points will be greatly amplified, and can cause corrosion pits of several types, depending upon conditions. While the corrosion pits only nucleate under fairly extreme circumstances, they can continue to grow even when conditions return to normal, since the interior of a pit is naturally deprived of oxygen and locally the pH decreases to very low values and the corrosion rate increases due to an autocatalytic process. In extreme cases, the sharp tips of extremely long and narrow corrosion pits can cause stress concentration to the point that otherwise tough alloys can shatter; a thin film pierced by an invisibly small hole can hide a thumb sized pit from view. These problems are especially dangerous because they are difficult to detect before a part or structure fails. Pitting remains among the most common and damaging forms of corrosion in passivated alloys[citation needed], but it can be prevented by control of the alloy's environment.
Pitting results when a small hole, or cavity, forms in the metal, usually as a result of de-passivation of a small area. This area becomes anodic, while part of the remaining metal becomes cathodic, producing a localized galvanic reaction. The deterioration of this small area penetrates the metal and can lead to failure. This form of corrosion is often difficult to detect due to the fact that it is usually relatively small and may be covered and hidden by corrosion-produced compounds.
Weld decay and knifeline attack
Normal microstructure
Sensitized microstructure
Main article: Intergranular corrosion
Stainless steel can pose special corrosion challenges, since its passivating behavior relies on the presence of a major alloying component (chromium, at least 11.5%). Because of the elevated temperatures of welding and heat treatment, chromium carbides can form in the grain boundaries of stainless alloys. This chemical reaction robs the material of chromium in the zone near the grain boundary, making those areas much less resistant to corrosion. This creates a galvanic couple with the well-protected alloy nearby, which leads to weld decay (corrosion of the grain boundaries in the heat affected zones) in highly corrosive environments.
A stainless steel is said to be sensitized if chromium carbides are formed in the microstructure. A typical microstructure of a normalized type 304 stainless steel shows no signs of sensitization while a heavily sensitized steel shows the presence of grain boundary precipitates. The dark lines in the sensitized microstructure are networks of chromium carbides formed along the grain boundaries.[3]
Special alloys, either with low carbon content or with added carbon "getters" such as titanium and niobium (in types 321 and 347, respectively), can prevent this effect, but the latter require special heat treatment after welding to prevent the similar phenomenon of knifeline attack. As its name implies, corrosion is limited to a very narrow zone adjacent to the weld, often only a few micrometers across, making it even less noticeable.
Crevice corrosion
Main article: Crevice corrosion
Corrosion in the crevice between the tube and tube sheet (both made of type 316 stainless steel) of a heat exchanger in a seawater desalination plant.[4]
Crevice corrosion is a localized form of corrosion occurring in confined spaces (crevices), to which the access of the working fluid from the environment is limited. Formation of a differential aeration cell leads to corrosion inside the crevices. Examples of crevices are gaps and contact areas between parts, under gaskets or seals, inside cracks and seams, spaces filled with deposits and under sludge piles.
Crevice corrosion is influenced by the crevice type (metal-metal, metal-nonmetal), crevice geometry (size, surface finish), and metallurgical and environmental factors. The susceptibility to crevice corrosion can be evaluated with ASTM standard procedures. A critical crevice corrosion temperature is commonly used to rank a material's resistance to crevice corrosion.
Tidak ada komentar:
Posting Komentar